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ABSTRACT

For many applications, understanding why a predictive model
makes a certain prediction can be of crucial importance. In the
paper “Towards Robust Interpretability with Self-Explaining Neu-
ral Networks”, [Alvarez Melis and Jaakkola 2018] propose a model
that takes interpretability into account by design. We study the
reproducibilty and validity of the proposed framework. Several
weaknesses of the approach are identified. Most notably, we find
that the model rarely generates good explanations, and that perfor-
mance is compromised more than reported by the authors when
enforcing explanations to be stable. We put forward improvements
to the framework that address these weaknesses in a principled
way, and show that they enhance the interpretability of generated
explanations.

1 INTRODUCTION

Increasingly, decisions that have a critical impact on peoples’ lives
are taken by machine learning (ML) algorithms. It is therefore
imperative that they should satisfy some important criteria [Doshi-
Velez and Kim 2017] such as safety [Amodei et al. 2016; Otte 2013;
Varshney and Alemzadeh 2017], not discriminating against certain
groups [Bostrom and Yudkowsky 2014; Hardt et al. 2016; Ruggieri
et al. 2010], and being able to provide the right to explanation of
algorithmic decisions [Goodman and Flaxman 2017].

These criteria are often hard to quantify completely. Instead, a
proxy notion is regularly made use of: transparency [Ribeiro et al.
2016a]. The idea is that if we can explain the inner workings of a
model i.e. why it makes the predictions it does, then we can check
whether that reasoning is reliable. Currently, there is no complete
consensus on the definition of transparency or how to evaluate it.

One approach taken towards attaining model transparency is to
formulate a framework of models that are transparent by design.
The models derived from this framework are then inherently trans-
parent. This approach is also taken by [Alvarez Melis and Jaakkola
2018], henceforth “the authors”, who propose a self-explaining neu-
ral network (SENN) that optimizes for transparency during the
learning process. They also propose three desiderata for explana-
tions in general — explicitness, faithfulness, and stability.

The authors propose to achieve transparency by learning inter-
pretable feature representations called concepts. Each feature is
then given a relevance score which is enforced to behave similarly
for relatively small changes in concepts. Their experiments yield
good explanations and minor accuracy losses. Our contributions are
as follows: We study the reproducibilty and validity of the proposed

Aman Hussain
12667447
aman.hussain@student.uva.nl

Ivan Bardarov
12579572
ivan.bardarov@student.uva.nl

framework, and we provide an extension that clearly increase the
interpretability of generated explanations.

2 METHOD

Much recent work has focused on post-hoc interpretability methods,
which try to understand a model’s inner workings after it has been
trained [Lundberg and Lee 2017; Ribeiro et al. 2016a]. Most of these
methods make no assumptions about the model to be explained,
and instead treat them like a black box. In contrast, SENNs try to
take interpretability into account by design, without sacrificing too
much modelling power. The difference between these methods will
be elaborated on in Section 6.
The three desiderata proposed for explanations are:

(1) Explicitness: Are the explanations immediate and under-
standable?

(2) Faithfulness: Are relevance scores indicative of "true" impor-
tance?

(3) Stability: How consistent are the explanations for similar ex-
amples?

2.1 Self Explaining Neural Networks

The authors begin their treatment of SENNs by positing that, for
input features xi,...,x, € R and parameters 6y, ...,0, € R, the
linear model f(x) = X7 0ix; + 0y is an interpretable model. We
discuss the validity of this assumption in Section 6.

Then, they generalize the linear model by allowing it to be more
complex, while retaining the interpretable properties of a linear
model. A self explaining neural network f is then defined by:

f(x) = g(0(x)1h()1, . .., 0(x)h(x)),

where

e 0 is a neural network mapping input features to relevance
scores, or parameters. We call this a parameterizer, and
elaborate on it more deeply in Section 2.2.

eh:X — RF computes k interpretable feature representa-
tions of the input x, where k is small. These feature repre-
sentations are referred to as basis concepts. We call this a
conceptizer, and discuss properties basis concepts should
have in Section 2.3.

e g is a monotonically increasing, completely additively sepa-
rable aggregation function.

The explanation of f(x) is then defined to be the set & (y) =

{(h(x);, 0 (x)i)}f.c=1 of the basis concepts and their relevance scores.



2.2 Parameterizer

An important property for the interpretability of linear models is
that parameters stay constant as feature values vary. This property
is lost when the parameters 6(x) are highly complex functions of
input features. For 0(x) to act as coefficients of a linear model in
the basis concepts h(x), the authors propose that the parameterizer
0 should be locally-difference bounded by the conceptizer h.
Intuitively, this means that for a small region around some input
value xp, a small change in h should lead to a small change in 0, i.e.
0 is robust to small changes in the concept values.

Locally-difference boundedness is enforced by minimizing the
robustness loss:

Lo = IVxf () = 06 (), ey

where ]f(’ (x) is the Jacobian of h with respect to x.

2.3 Basis Concepts

Concepts could be generated by domain experts, but this is expen-
sive and in many cases infeasible. An alternative approach is to learn
the concepts directly [Kim et al. 2018]. For the SENN explanations
to be useful, the basis concepts need to be directly interpretable by
humans. While interpretability is still not well defined, the authors
propose three desiderata for interpretable concepts:

(1) Fidelity: the representation of x in terms of concepts should
preserve relevant information,

(2) Diversity: inputs should be representable with few non-
overlapping concepts, and

(3) Grounding: concepts should have an immediate human-
understandable interpretation

These conditions are enforced on the concepts by: (1) learning
h as the latent encoding of an autoencoder (2) making said au-
toencoder sparse and (3) providing interpretations for concepts by
prototyping [Li et al. 2017], e.g. by. finding a set of observations
that maximally activate a certain concept. An autoencoder learns
to map an input x to a lower dimensional information preserving
latent representation, or encoding, h. A sparse autoencoder is one
in which only a relatively small subset of the latent dimensions
activate for any given input.

2.4 Implementation

Although a public implementation of SENN is available !, the au-
thors have not officially released that code with the paper. There
also seems to be a major bug in this code: the concept loss L, is
not used. Therefore, the framework is re-implemented with the
original paper as ground truth.

On a high level, the SENN model consists of three main building
blocks: a parameterizer, a conceptizer, and an aggregator. The pa-
rameterizer 0 is actualized by a neural network, and the concep-
tizer is actualized by an autoencoder. The specific implementations
of these networks may vary. For tabular data, we use fully con-
nected networks. For image data, we use convolutional networks
[LeCun et al. 1998]. Like the authors, we use a sum operator for the
aggregator g for all experiments discussed here. An overview of
the model can be found in Figure 1.

Uhttps://github.com/dmelis/SENN
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Figure 1: SENN architecture [Alvarez Melis and Jaakkola
2018].

To train the model, the authors minimize the loss function

L= Ly(f(x),y) + AL (f(x)) + ELp(x), )
where

o Ly(f(x),y) is the classification loss, i.e. how well the
model predicts the ground truth label.

o Ly(f(x))isthe robustness loss given by Equation (1). Aisa
regularization parameter controlling how heavily robustness
is enforced.

o L (x) is the concept loss. The concept loss is a sum of 2
different losses: reconstruction loss and sparsity loss. ¢
is a regularization parameter on the concept loss.

The authors don’t specify which classification loss, reconstruc-
tion loss, and sparsity loss they specifically use. We implement the
classification loss with the cross entropy loss, the reconstruction
loss with a mean squared error loss, and the £;-norm of the concept
activations h(x) as the sparsity loss. For the robustness loss, the
authors don’t specify which matrix norm should be used. We use
the Frobenius norm, which returns the sum of squared elements
of a matrix. Finally, the authors confusingly refer to the concept
regularization loss hyperparameter &, which is present in Equation
(2), as the sparsity strength parameter. We choose to interpret it as
the latter.

2.5 Extensions

Besides studying the reproducibility of the SENN framework, we
also propose several extensions. The first extension deals with
explicitness: we improve the interpretability of explanations by
creating more interpretable concepts. If the learned concepts cannot
be interpreted, the SENN explanations are nearly meaningless. For
this reason, we aim to improve the diversity and grounding of the
concepts.

The authors represent concepts with prototypes. While multiple
prototyping methods are proposed, the authors delegate some to
future work and only explore the following method: A single concept
is represented by a set of data samples that maximizes that concept’s
activation. The authors reason that we can read off what the concept
represents by examining the feature shared by these maximizing
samples. Although this approach might seem reasonable at first
glance, it has some major shortcomings.


https://github.com/dmelis/SENN
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Firstly, only showcasing the samples that maximize an encoder’s
activation is quite arbitrary. One could just as well showcase sam-
ples that minimize the activation instead, or use any other method.
These different approaches lead to different interpretations even if
the learned concepts are the same. The authors also hypothesize
that a sparse autoencoder will lead to diverse concepts. However, en-
forcing only a subset of dimensions to activate for an input does not
explicitly enforce that these concepts should be non-overlapping.
Additionally, each single concept may represent a mix of features
that are entangled in some complex way. This greatly increases the
complexity of interpreting any concept on its own.

Disentangling SENN (DiSENN). To enhance concept interpretabil-

ity, we therefore propose to explicitly enforce disentangling the
factors of variation in the data and using these as concepts instead.
Matching a single generative factor to a single latent dimension
allows for easier human interpretation [Bengio et al. 2014], while
additionally enforcing concepts to be non-overlapping. More ab-
stractly, a disentangled representation may be viewed as a concise
representation of the variation in data we care about most — the
generative factors.

We enforce disentanglement by using a f-VAE [Higgins et al.
2016], a variant of the Variational Autoencoder (VAE) [Kingma and
Welling 2014], as conceptizer. f-VAE introduces a hyperparameter f§
that weights the KL-divergence term in the VAE objectve. For larger
B, the latent space will be encouraged to look like a unit Gaussian,
so that the dimensions are encouraged to be independent.

We call a disentangled SENN model with -VAE as the con-
ceptizer a DISENN model. Let an input x produce the Gaussian
encoding distribution for a single concept h(x); = N (y;, ;). The
concept’s activation for this input is then given by p;. We then
vary a single latent dimension’s values around y; while keeping
the others fixed, call it y.. If the concepts are disentangled, a sin-
gle concept should encode only a single generative factor of the
data. The changes in the reconstructions hgec (pic) will show which
generative factor that latent dimension represents. We plot these
changes in the reconstructed input space to visualize this. y is
sampled linearly in the interval [y; — ¢, g; + q], where q is some
quantile of h(x);.

Robustness Study. The authors enforce the stability desidera-
tum of explanations by minimizing the robustness loss. They then
test stability by adding Gaussian noise to an input and examining
the perturbation in the obtained explanations. However, adding
Gaussian noise does not correlate highly with a change in human
interpretation of similarity. We are actually only interested in how
robust explanations are with respect to images that are perceived
to be similar by humans. Our contribution is to study exactly that
behavior. We find qualitatively similar MNIST images and compare
the robustness of their explanations.

Concept Visualization. We implement a prototyping method
that the authors delegate to future work. A concept is represented
by samples that maximize a concept’s activation and minimize the
other concepts’ activations. We qualitatively analyze the obtained
prototypes.

3 EXPERIMENTAL SETUP

In our experiments, we use the MNIST digit recognition image
dataset and Propublica’s COMPAS Recidivism Risk Score dataset?
(Compas) tabular dataset. The authors’ description of their prepro-
cessing of the Compas dataset is very incomplete. Full details about
this can be found in Appendix A.1). The specific SENN architectures
used for these datasets can be found in Table A.3.

3.1 Reproducibility Experiments

An important requirement for the SENN framework is that it should
be capable of achieving high performance, which is what the
authors claim. This is therefore the first thing we try to reproduce.
We train SENN models on the previously mentioned datasets and
compare our performance to the authors’ reported performance.
We evaluate the quality of explanations generated by the
framework on random images from the MNIST test set. Evaluation
is done by trying to reason about the interpretability of the learned
concepts and their relevance scores. For evaluation, concepts are
represented by maximally activated prototypes, like the authors do.
We also investigate the trade-off between accuracy and ro-
bustness. We train models with different values of the robustness
loss regularization parameter A and report the achieved accuracies.
All the experiments mentioned in this section use the same hyper-
parameters and architecture that were reported by the authors. The
specific hyperparameters can be found in Table 1 in the appendix.

3.2 Extension Experiments

Our most important extension is the disentangling of the learned
concepts. As discussed in Section 2, DISENN’s concept submodel
is actualized by a -VAE (refer to A.3 for the architecture details).
During training, we set § = 4, since this is reported to generally
work well [Higgins et al. 2016]. There is a trade-off in how well the
latent space is disentangled and how well the input is reconstructed
[Burgess et al. 2018]. Therefore, we pre-train the f-VAE with f = 1,
which reduces it to a standard VAE. This preserves fidelity by hav-
ing the network first learn how to reconstruct the input well, before
encouraging disentanglement during the training process.

In the robustness study, we need to find examples that are
semantically similar. We do not do this by hand, but cluster im-
ages based on the Euclidean distance in the latent space of an
autoencoder trained on MNIST. Clustering is done using K-nearest-
neighbors.

4 RESULTS

4.1 Reproducibility Experiments

We first report the performance our models attain. On MNIST,
the highest test set accuracy we reach is 98.9%, while the authors
report 99.1% to 98.7% for different robustness regularization settings.
On the Compas dataset, our model reaches a final accuracy of
80.9% compared to the 82% reported in the original paper. These
results seem to match up reasonably well. We deem classification
performance to be reproducible.

To evaluate the quality of explanations, we plot MNIST model
explanations as in Figure 2, which displays 2 of these. The upper

Zhttp://github.com/propublica/compas-analysis/
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explanation, for digit eight, is arguably interpretable if the authors’
logic is adopted. It can be reasoned about in the following way.
Concepts 2 and 4 have high relevance scores. This makes sense as
concept 2 seems to encode “digit 8” and a diagonal stroke, which is
present in the image. Concept 4 seems to encode “digit 3”, which is
visually similar to the right half the input image. All other concepts
have negative relevances, which matches the authors’ interpre-
tation that their prototypes are dissimilar from the test example.
However, this example was not randomly sampled but selected by
hand for the purpose of this demonstration. In general, the pro-
duced explanations look more like the second example, for which
no reasonable explanation can be found. Similar explanations for
the Compas dataset are shown in the Appendix (Figure 5).

We now examine the trade-off between accuracy and robust-
ness. In Figure 3, we show the change in test accuracy as robustness
regularization increases. We see that, as expected, accuracy drops
for increasing regularization. We compare these results to the au-
thors’ in Section 5.
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Figure 3: Change in test accuracy for increasing robustness
regularization (1). Error bars represent the standard devia-
tion over three different seeds.

4.2 Extensions

DiSENN. We now examine the DiSENN explanations by analyz-
ing a generated DiSENN explanation for the digit 7 in Figure 4. The
contribution of concept i to the prediction of a class ¢ is given by
the product of the corresponding relevance and concept activation
Oic - h;.

First, we look at how the concept prototypes are interpreted. To
see what a concept encodes, we observe the changes in the proto-
types from left to right. Taking the second row as an example, we
see a circular blob slowly disconnect at the left corner to form a 7,
and then morph into a diagonal stroke. This explains the charac-
teristic diagonal stroke of a 7 connected with the horizontal stroke
at the right top corner but disconnected otherwise. As expected,
this concept has a positive contribution to the prediction for the
real class “digit 7” and a negative contribution to that of another
incorrect class, “digit 5”.

Robustness Study. If the robustness regularization achieves its
intended effect, perceptually similar inputs should lead to similar
explanations. We generate explanations for semantically similar
and find that the explanations are indeed robust. For detailed results,
we refer to Figure 6 in the appendix.
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5 DISCUSSION

Reproducibility. The results presented in Section 4.1 show that
the authors’ results are partly reproducible. Specifically, we are
able to achieve similar test accuracies, which seems to validate the
authors’ claim that SENN models have high modelling capacity.
Even though this is the case, the MNIST and Compas datasets are of
low complexity. The relatively high performance on these datasets
is therefore not sufficient to show that SENN models are on par
with non-explaining state-of-the-art models.

We now look at the reproducibility of the experiment that com-
pares the impact of the robustness regularization on accuracy. Fig-
ure 3 shows that regularizing more decreases classification accuracy.
This behavior matches up with the authors’ findings. However, we
find the accuracy drop on the Compas dataset for increasing regu-
larization to be significantly larger than reported by the authors.
On the MNIST dataset, they report an accuracy of 98.7% for regu-
larization strength A = 1, whereas accuracy drops critically to 40%
in our experiments. We conclude that this experiment is not re-
producible.

Assessing the quality of explanations is inherently subjec-
tive. It is therefore difficult to link the quality of explanations to
reproducibility. This difficulty is exacerbated when it is not clear
what generative factor a concept represents. However, we can still
partially judge reproducibility by qualitative analysis. In Figure 2,
we showcase one example that can be explained quite well and
one that cannot. In general, we see that finding an example whose
explanation makes sense is difficult and that such an example is
not representative of the generated examples. Therefore, we
conclude that obtaining good explanations is, in that sense, not
reproducible.

Section 2.4 outlines other factors that impede reproducibil-
ity: classification, reconstruction, and sparsity losses are not speci-
fied; the matrix norm used in Equation (1) is left unspecified; and
the value of the concept loss hyperparameter ¢ in Equation (2) is
ambiguous.

Beyond reproducibility, we also find that the framework is dif-
ficult to extend to domains beyond those mentioned in the
paper. With current deep learning frameworks, the implementa-
tion of the Jacobian computation, and hence the robustness loss,
does not generalize to arbitrary data formats. One would have to
manually adapt its implementation any time they want to use a
SENN for a new data format.

DiSENN. DiSENN provides a principled way to generate pro-
totypes, since interpolation in the latent space of a VAE can be
done meaningfully. Another advantage is that prototypes are not
constrained to the input domain, since the VAE is a generative
model. The prototypes generated by the DiSENN are more complete
than highest activation prototypes, since they showcase a much
larger portion of a concept dimension’s latent space. Seeing the
transitions in concept space provides a more intuitive idea of what
the concept means.

However, despite the hope that disentanglement encourages
diversity, we observe that concepts still demonstrate overlap. This
can be seen from concepts 1 and 2 in Figure 4. This means that
the concepts are still not disentangled enough, and the problem
of interpretability, although alleviated, remains. The progress of
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good explanations therefore depends on the progress of research
in disentanglement.

6 BROADER IMPLICATIONS

As we have seen, SENNSs are designed and trained during learning to
give explanations for particular predictions. This approach differs
from much work done previously, which focus on finding expla-
nations after a model has been trained. Since the explanations are
given for single predictions and not for the model as a whole, they
are called local explanations.

A well-known method for producing local explanations is the
use of surrogate models. In this paradigm a simpler “interpretable”
model is fit to the predictions of the black box model we attempt to
explain. The simpler surrogate model is then used as a proxy to draw
conclusions about the black box model. This can be done “globally”
for the whole model, or “locally” on individual predictions. [Ribeiro
et al. 2016a,b], the first to propose local surrogate models, use a
sparse linear model as their interpretable model. The coefficients
of the linear model are then used as feature importances. They call
this method LIME.

[Lipovetsky and Conklin 2001] propose a game theoretic ap-
proach to determine how much each feature contributes to the
overall prediction, which can be measured by the Shapley value.
[Lundberg and Lee 2017] propose ways to efficiently estimate the
Shapley value for linear models, tree-based models, and deep mod-
els.

[Sundararajan et al. 2017] describe axioms that any explanation
method should satisfy, and derive the Integrated Gradients explana-
tion method based on these axioms.

In contrast to SENN, the aforementioned methods all focus on
post-hoc explanations. Another important distinction between pre-
viously mentioned approaches and SENN is the usage of concepts.
The aforementioned methods use the raw input features along
with their importances as explanations. The authors argue that raw
features (such as individual pixels in images) tend to be hard to
analyze coherently for high-dimensional inputs, often leading to
unstable explanations. Concept learning can therefore be seen as
an advantage of SENN, but only on the presupposition that the
concepts themselves are immediately interpretable. As we have
seen in Section 5, this is not necessarily the case.

A big assumption of the SENN framework is that linear models
are interpretable. This claim’s validity, however, depends on the
notion of interpretability that is used [Lipton 2017].

7 CONCLUSION

In this work, we examine the reproducibility of [Alvarez Melis and
Jaakkola 2018], who propose SENN, a framework for models that are
both highly performant and intrinsically capable of explaining their
predictions. We find that the accuracies reported by the authors
can be reached. However, for a higher robustness regularization
parameter, our accuracies drop significantly more than reported by
the authors. We also see that finding an example whose explanation
makes sense is difficult, and that the framework is difficult to extend
to domains beyond those mentioned in the paper. We propose an
extension that alleviates the problem of finding good explanations
slightly by providing a principled approach for concept prototyping.
Due to the limited reproducibility we do not award the paper any
ACM badge.
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A APPENDIX
A.1 Data Preprocessing

We use the original MNIST with standard mean and variance nor-
malization. Additionally, we separate 10% of the training data for
validation.

The Compas dataset resides in a GitHub repository and needs to
be handled more carefully. Unfortunately, multiple datasets exist in
the repository and the name of the file, used for the experiments
in the original paper, is not explicitly specified. For this reason, we
use the version, used by the public implementation®, where the
preprocessing is already done. Furthermore, the authors suggest
that as part of the preprocessing task they removed inconsistent
examples, whose label differs from a strong (80%) majority of other
identical examples. However, they do not elaborate any further on
the exact approach so we used the same preprocessing code found
in the public implementation. We use splits of 80%, 10%, 10% for
training/validation/testing.

A.2 Hyperparameters

Table 1: Hyperparameters SENN

Compas MNIST
Number of epochs trained 100 5
Number of concepts 11 (input dimension) 5
Learning rate 2% 1074 2% 1074

Concept Regularization 0 1

Sparsity Regularization (&) 2x107° 2x107°
Robustness Regularization (1) 1 x 107* 1x1074
Dropout Rate 0.0 0.5

Table 2: Hyperparameters DiSENN

MNIST

Number of concepts 5
Learning rate 2x1074
Concept Regularization 1
Sparsity Regularization (&) 2x107°
Robustness Regularization (1) 1 x 107*
Dropout Rate 0.5

B 4

A.3 Architectures

In Table 3. the layers are defined as follows: FC — Fully-connected
+ ReLU + Dropout, CL — Convolutional + ReLU, UP — Transposed
Convolution + ReLU. Note that the last layer of the conceptizer‘s
encoder does not have an activation while the last layer of the
conceptizer‘s decoder and the parameterizer, the ReLU activation
is replaced with a Tanh.

Shttps://github.com/adebayoj/fairml/raw/master/doc/example_notebooks/
propublica_data_for_fairml.csv
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Table 3: SENN Architectures
(A.3 for explanations)

Compas MNIST
h(X)encoder  h(X)encoder =%  CL((5%5, 10))
h(X)decoder M (X)decoder =%  UP((5%5,16),(5%5,8),(2x2,1))
o) FC(10,5,5,10) Conv((5x5,10),(5x5,20)) —
FC(320,50)
9() 0(x)"h(x) () h(x)

Table 4: DiSENN Architecture
(A.3 for explanations)

MNIST
A(X)encoder FC(512, 256, 100, 5)
h(X)gecoder FC(5, 100, 256, 512, 784)

a(-) Conv((5x5,10),(5x5,20)) —
FC(320,50)
9() () h(x)

Figure 5: One negative and one positive example of an expla-
nation produced for the Compas dataset.

A.4 Robustness Study
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Figure 6: Perceptual similar test examples (top), their rele-
vances (middle), and concept activations (bottom).

A.5 Concept Representations

The results of the reproducibility experiments revealed that there
is potential for improvement in the concept representation. The
extent to which the explanations are human interpretable given the
concept representation is very limited. The authors propose two
alternative methods to be explored in future work. One of them is
to select the prototypes of the concept not only by the highest acti-
vation but also by optimizing for little activation of all remaining
concepts at the same time. We call this method highest contrast. The
other approach visualizes the filters of the last layer of the convolu-
tional encoder that correspond to each concept. This is a reasonable
choice as deeper layers represent higher layer features. Figure 7
shows the obtained concept representations with these methods
applied to the same SENN model used for the analysis of explana-
tions (Figure 2). The prototypes selected by highest contrast seem

Concept Prototypes:

Concept 1
Concept 2
Concept 3
Concept 4
Concept 5

9 data examples with highest contrast per concept

(a) Highest Contrast

Concept Prototypes:

Concept 1
Concept 2
Concept 3

Concept 4 4

Cunteptyuﬂ'a!i

10 dimensions of concept filters

(b) Filter

Figure 7: Alternative concept representations. Highest con-
trast and filter visualisation.

to have a higher entropy of digit classes within one concept com-
pared to the prototypes by highest activation. The interpretation of
concepts is changed when using this method for concept represen-
tation instead of the standard approach. For example, concept 4 was
previously most activated by digit three prototypes. However, with
highest contrast, the concept is not represented by prototypes of a
certain digit class. This inconsistency in interpretability of the con-
cepts when using different visualization methods raises doubts that
the way of representing the concepts by prototypes of the dataset
is meaningful at all. The second method of visualizing the filters
associated with one concept does not show human interpretable
results on MNIST. The patterns in the filters do not uncover any
clear features.



A.6 Who did what?

We collaborated effectively to create the model training infrastruc-
ture, and everyone contributed equally. Additionally, Ivan worked

Omar Elbaghdadi, Aman Hussain, Christoph Hoenes, and Ivan Bardarov

on reproducing the robustness study, Christoph worked on alter-
native visualization techniques, Aman worked on the f-VAE im-
plementation while Omar focused on putting the whole report
together and discussing our findings.
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