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Abstract— In this work, we investigate the application of
attention-based hierarchical LSTM architecture variants to the
problem of question classification. We show that although the
hierarchical design greatly improves performance over vanilla
LSTMs, adding an attention mechanism only results in slight
improvement. Then, we change perspective to probabilistically
model the question dataset using discrete latent variables in
order to see if the given coarse-level categories will be re-
discovered. While some latent structure is learned, it is not the
one we expected. We consider the possible reasons and suggest
future improvements.

I. INTRODUCTION

With a constant development of neural methods in areas of
NLP and Information Retrieval, Question Answering (QA)
systems are becoming an interesting and convenient alter-
native for retrieving desired information. For a QA system
to work effectively, it is important to correctly distinguish
the type of the question and knowledge domain in order
to infer what kind of answer is expected. It has been
recognised that this process can be helped by the means of
Question Classification (QC), which can improve accuracy of
the QA task.[Liu et al., 2019][Xu et al., 2019] Nowadays,
QC is usually a first step of a QA-procedure. The most
probable question class is inferred which can be later used for
constructing a correct answer, e.g. by delimiting the answer
to a numerical expression, or even constraining it to correct
domain vocabulary as shown by [Xu et al., 2019].

We use TREC dataset1 to tackle the QC. Our base-
line is a simple LSTM [Hochreiter and Schmidhuber, 1997].
We compare this to the Hierarchical LSTM (HiLSTM)
and the Attention-based LSTM (AttLSTM) proposed by
[Xia et al., 2018]. Since these architectures build on top of
each other, we carry out the comparison in the form of an
ablation study.

We also look at the dataset of questions from a
probabilistic modelling framework and try to extend it by
investigating latent aspects of the data in an unsupervised
manner. The questions are classified at both the fine and
coarse level. Although at the fine-level we have 50 classes,
there are only 6 classes at the coarse-level. If we assume
that this coarse level classification information is unobserved
or unavailable to us, can we still model them as discrete
latent variables using exact marginalisation? We hypothesize
that prescribing a discrete latent structure will lead us to
re-discover the coarse-level information.

The research questions our work seeks to answer are as
follows:

1https://cogcomp.seas.upenn.edu/Data/QA/QC/

• Does attention mechanism and the hierarchical approach
improve the prediction performance of an LSTM?

• Does modelling the questions with discrete latent vari-
ables under exact marginalisation recapture the given
coarse-level classification?

In our ablation study, we dissect the AttLSTM and
HiLSTM to analyse what quantitative and qualitative advan-
tages the extra features introduced by those networks actually
bring. For the discrete latent variable modelling experiments,
we jointly model the question and the discrete latent factor
as: p(x, z). After estimating the parameters using exact
marginalisation, we investigate the latent assignments of the
models. We open-source our code and experiment configu-
ration files on Github.

A. Related Work

The LSTM models introduced by [Xia et al., 2018] (At-
tLSTM, HiLSTM) are presented and applied to various
tasks of which QC is one. They reported that overall, the
addition of the attention mechanism led to better prediction
performance on all investigated tasks. This suggests that
using the attention mechanism allows for a more robust way
to capture local features and model long-term dependencies.

[Xu et al., 2019] tackled the QC task by introducing
an expansion of BERT; BERT-QC, where original inabil-
ity of BERT to address multi-label classification scenarios
was remedied by employing the duplication method of
[Tsoumakas and Katakis, 2007]. Their novel model achieves
state-of-the-art performance on all benchmark datasets they
tested QC-BERT on.

[Liu et al., 2019] introduce their model, made of
attention-based Bi-GRUs combined with CNNs. This model
is deployed in QC for Chinese questions. They hypothesise
that CNNs and Bi-GRU complement each other; CNNs
are able to capture local dependencies while the recurrent
feature in Bi-GRU captures long-term information.

II. METHODS

A. Models

To perform the question classification task we use different
types of LSTM [Hochreiter and Schmidhuber, 1997] models
and investigate effects on their predictive performance as an
ablation study. We start with a base LSTM and for each new
model we introduce we modify it to add more complexity to
the model.

1) word-LSTM: Our baseline is an ordinary LSTM model.
The words first pass through an embedding layer and are then
fed into the LSTM. The last output of the LSTM is passed
to a classification layer.

https://github.com/XlightwolfX/DL_NLP_project


2) Hierarchical LSTM (HiLSTM): The first modification
is a hierarchical layer. LSTMs are generally used to process
a sentence word by word. In the hierarchical case there are
two LSTMs. The first, lower-level LSTM is on the word
level; each character passes through an embedding layer.
The concatenation across all time steps is considered a word
representation. These word representations are subsequently
fed into the higher LSTM. As before, we consider the
concatenation across all time steps as the sentence rep-
resentation. This representation is then passed to a final
classification layer.

3) HiLSTM + Highway: The next modification we con-
sider is adding a highway network [Srivastava et al., 2015]
into the Hi-LSTM. A highway network is an information
gating mechanism based on the one used in the LSTM. By
controlling the information flow it can help a deep neural
network to learn more effectively by reducing the effect
of vanishing gradients. A single layer highway network is
defined by the following equation,

y = T � f(W xx+ bx) +C � x (1)

where the transform gate T and carry gate C are defined as:

T = g(W Tx+ bT ) (2)
C = 1− T (3)

For the non-linear transformation f we used the ReLU and
for g we used the sigmoid function σ.

We add a single layer highway network in two different
ways. In one model we add it on top off a single word
representation, as done in the work of [Xia et al., 2018].
This means that each word representation is passed to the
same highway network one at a time. This refines the word
representations. Further modification of the model is done
on this version.

In the second model we add the highway network on top
of all word representations at once. The difference here is
that all word representations are fed into the network in one
go. We hypothesize that this causes the highway network
to put emphasis on what time step contains the most useful
information.

4) Hi-AttLSTM + Highway: Our last modification is
adding an attention mechanism to the LSTM cell, which
was introduced by [Xia et al., 2018]. This AttLSTM cell
considers K previous timesteps instead of only one. The
normalized attention weight αk is computed by,

vk = tanh (W vhk + bv) (4)

αk =
exp(wcvk)∑K
j exp(wcvj)

(5)

where the trainable parameter W v is two dimensional and
wc is one dimensional. The attention weights are then used
to compute the local information of the previous K hidden
states, as following,

y =

K∑
k

αkhk (6)

Fig. 1: The schematic diagram of the AttLSTM. The weights
α learned from the attention mechanism have been removed
for simplicity. Image taken from [Xia et al., 2018].

The computations in the AttLSTM cell are given by,

it = σ(W ixi +U iht−1 + bi) (7)
f t = σ(W fxf +Ufht−1 + bf ) (8)
ot = σ(W oxo +Uoht−1 + bo) (9)
ht = attention(Ukht−k � i+ bk) (10)
ut = tanh (W uxu + ht + bu) (11)
ct = (1− f t)� ut + f t � ct−1 (12)
ht = ot � tanh ct (13)

The attention function is the attention mechanism given by
the equations (4-6). The schematics of the AttLSTM cell are
given in Figure 1. In the Hi-AttLSTM + highway model both
RNNs are AttLSTMs.

B. Discrete Latent Variable Modelling

The question dataset is modelled generatively as follows:

p(x|θ) =
∑
z∈Z

p(x, z|θ)

where a language model of the questions is obtained by
marginalising over the joint distributions of the questions and
the latent factors. The model admits exact marginals since
we set the cardinality of the latent assignments to be only 6.

We use neural networks to efficiently parameterize our
discrete latent variable model. We implement a sequence-
to-sequence recurrent architecture with LSTM-based en-
coders and decoders [Sutskever et al., 2014]. A batch of
questions are tokenized, padded and then the token em-
beddings are passed sequentially to the encoder. The en-
coder passes the last hidden state as the context vector
to the decoder which then learns to regenerate the ques-
tion sequence [Zhou and Neubig, 2017]. Each sequence-to-
sequence model parameterizes the joint distribution p(x, z|θ)
for every z ∈ Z . Therefore, we initialize six sequence-to-
sequence models for our setup.

The parameters are estimated via a gradient-based maxi-
mum likelihood principle. The joint probability distribution
returned by each of the sequence-to-sequence networks are
summed up. We measure the cross-entropy against the true
distribution of the tokens in the question. We experiment
with two variants of the architecture: embedding dimensions



∈ {20, 128} and hidden dimensions ∈ {40, 256} for the
LSTM encoder and decoder.

III. EXPERIMENTS

For both experiments we trained every model with the
TREC question classification dataset.[Li and Roth, 2002]
This dataset has a total of 5452 training queries and 500
test examples. Where each query is labeled with one of
six course classes and one of fifty fine classes. We have
subdivided the training queries into 4000 training examples
and 1452 validation examples. It is important to note that the
coarse classes are somewhat evenly represented, however the
distribution of the fine classes is considerably skewed. See
Figure 2.

Fig. 2: Distribution of fine classes in the used dataset.

A. Ablation Study

The goal of the ablation study is to see what is
the impact of every feature of the model introduced by
[Xia et al., 2018], i.e. the goal is to investigate what changes
the attention mechanism, hierarchical structure and highway
network bring in terms of model performance. The used
hyperparameters can be found in Table I. Results are reported
in Table II. These results include the final test performance
in terms of accuracy, F1-score and loss averaged over 5
runs with different random seeds, as well as the standard
deviation of each metric. The table includes results obtained
without regularisation and results where dropout was applied
to the LSTM modules. The results of the HiLSTM with the
secondary highway network are reported in Appendix A.

B. Discrete Latent Variable Modelling

Once we have estimated the parameters with a reasonable
perplexity (≈ 4), we begin analyzing the joint models
of p(x|z) for every z ∈ Z to see if they rediscovered
the available coarse-level categorical classes. We pass each
question from the test set to all the six sequence-to-sequence
models and measure the perplexity against the distribution
of the original sequence. The joint model with the lowest
perplexity can then be assumed to have best modelled the
question x and the latent factor z. Therefore, we label that

particular question with the index of the joint model as it
was most likely to have been generated with that latent
assignment z from all of Z . We juxtapose these discrete
latent assignments against the available coarse-level classes
in Figure 3. The matrix heatmap is shown for both the
variants of the sequence-to-sequence architecture.

IV. DISCUSSION

It can be seen from the ablation study (Table II) that
the hierarchical structure of the LSTM has an advantage
over the word-LSTM, since in both coarse and fine clas-
sification setting, HiLSTM out-performs the word-LSTM by
a considerable margin. However, the addition of highway
network and the attention mechanism seem to have little to
no effect, as the achieved performance by HiLSTMh and
Hi-AttLSTMh is essentially identical to the performance
of HiLSTM. We can argue in both cases that the learning
process was impaired by the small size of the dataset; in case
of the fine classification, we have seen already in Figure 2
that the class distribution of those 50 classes amongst 5452
questions is so uneven that big part of the classes could not
be effectively learned because they were barely encountered.
This was not a problem for the distribution of coarse classes,
thus we can see considerably better results for the coarse
classification. Still, the results of all hierarchical LSTMs are
quite similar. We see a small improvement of HiLSTMh and
Hi-AttLSTMh against HiLSTM, however, but they perform
virtually the same.

We hypothesise that the increase in complexity of the mod-
els in question has led the models to overfit on the dataset,
which caps their performance on similar level, regardless of
varying model complexity. This assumption has motivated
the test run with regularisation in form of dropout, which
can also be seen in Table II. The dropout test has proven that
HiAttLSTMh was indeed suffering from higher generalisa-
tion error, as its performance has risen above both HiLSTMs.
Thus, it can be concluded that the addition of the attention
mechanism indeed helps the model to generalise better on
the question classification task. It has been also shown by
[Xia et al., 2018] that tuning of the hyperparameter K shows
potential to improve the performance considerably. On the
other hand, the HiLSTM did not improve after the addition
of the dropout. Since the regularisation did not reduce the
generalisation error, this would suggest that the addition of
highway network simply does not have a strong influence
on the performance. It was indeed also acknowledged by
[Xia et al., 2018] that highway network is mainly utilised for
better information flow in very deep networks. It is possible
that our models are not deep enough to fully utilise the
passed information through the highway.

We set out trying to find out if discrete latent variable mod-
elling of the question classification dataset would somehow
rediscover the six coarse-level categories. We estimated the
parameters of this generative model using six joint language
models trained together by exact marginalisation over the
discrete latent factors. We aggregated the latent assignments
of this model over the entire test set and then contrasted



vocab size embedding (low) hidden high hidden learning rate epochs
word-LSTM 7827 20 40 - 1e-3 50
hier. LSTMs 100 20 40 40 1e-3 50

TABLE I: Hyperparameters used for the ablation study.

No Dropout Dropout 0.7
Model Accuracy F1-score Loss Accuracy F1-score Loss

Fine Classification
HiLSTM 0.665±0.007 0.632±0.009 1.537±0.036 - - -
HiLSTMh 0.659±0.010 0.633±0.013 1.572±0.077 - - -
Hi-AttLSTMh 0.645±0.017 0.628±0.015 1.415±0.074 - - -
word-LSTM 0.438±0.038 0.367±0.033 2.469±0.144 - - -

Coarse Classification
HiLSTM 0.818±0.011 0.814±0.012 0.513±0.027 0.809±0.016 0.805±0.019 0.539±0.014

HiLSTMh 0.825±0.010 0.822±0.009 0.487±0.020 0.819±0.015 0.818±0.015 0.511±0.021

Hi-AttLSTMh 0.826±0.007 0.824±0.008 0.636±0.215 0.856±0.012 0.852±0.012 0.407±0.031

word-LSTM 0.689±0.053 0.682±0.049 0.635±0.215 0.591±0.103 0.572±0.105 1.070±0.195

TABLE II: Test results of the investigated models for the ablation study. Suffix ’h’ denotes applied highway network.

Fig. 3: Discrete latent assignments of questions against their coarse-level classes. The heatmap on the left is for the smaller
model (embedding dimension: 20, hidden dimension: 40) and the one on the right is for the bigger model (embedding
dimension: 128, hidden dimension: 256).

it with the coarse class labels in Figure 3. On the left
we see that the smaller architecture, with 20 embedding
dimensions and 40 hidden dimensions, does not really show
any particular bias to the coarse-level classes. The first latent
factor is able to model most of the questions from all the
coarse categories followed by the fifth latent factor. On
the right we find that the results are even more extreme
for the bigger architecture, with 128 embedding dimensions
and 256 hidden dimensions. Here the fourth latent factor
models almost all the coarse classes. This nullifies our initial
hypothesis. The six latent factors modelled by our setup
seems to be different than the given six coarse categories.
In retrospect, this seems obvious because we never induced
any constraints to learn those particular categories. Shedding
the probabilistic perspective and assuming the representation
learning view, we find that neural networks transform the
data manifold to whatever shape makes it easy to perform the
given task. In the absence of such inductive biases, they learn
a "shortcut" [Geirhos et al., 2020] to solve the task. There
are several ongoing inquiries into the nature of latent factors

and how to manipulate them, most notably on trying to
disentangle the factors of variation [Desjardins et al., 2012].

V. CONCLUSION

The ablation study concluded that the hierarchical alter-
native of LSTM is able to generalise on the question dataset
considerably better than regular word-LSTM, as it gets
outperformed by a high margin. The addition of a highway
network does not improve the performance considerably. It
has been reasoned that this is because of the tested networks
being too shallow for the alternative information flow to
be fully utilised. The attention mechanism does provide
a slight improvement to the performance after appropriate
regularisation.
The discrete latent variable model did not capture the avail-
able coarse-level classes. In future work, one can introduce
some inductive biases that incentivize the model to learn
useful latent factors by uncovering statistical dependencies
between random variables.
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APPENDIX

A. Secondary Highway Network
The accuracy of the HiLSTM with the secondary highway

network (HiLSTM + Highway II) is 0.677 ± 0.016 for the
fine classes and 0.819 ± 0.015 for the coarse classes. It
seems that network performs better than the other models
on the finer classes than the coarse classes. If we take the
average activation of the highway network per coarse and fine
class, we see that the placing the highway network at this
location, it catches what temporal information is important in
a questions asked. See Figure 4. We see that the first word

Fig. 4: Average activations per coarse class from the test set.

is the most important to determine what type of question
is being asked. This is most likely because questions with
question words such as ‘who’ and ‘how’. We also observe
that the second most important word often follows closely
after the first word. Meaning that the important pieces of
a question are often found at the beginning of its sentence.
When we look at the activations of the fine classes (Figure

Fig. 5: Average activations per fine class from the test set.
Some have no activations because not every class is present
in the test set

5). We see that more words become important to distinguish
between the different classes, because there are more classes
to discriminate between. This might have helped the network
to outperform the other models on the fine classes.

As we suspected, putting the highway network such that
all word representations go into it at once, it spots what



temporal information is important. As an effect the highway
network in this case also served as to partly explain what the
whole network is doing.
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