
Encoding Sentences with Neural Models

Omar Elbaghdadi
12660256

omarelb@gmail.com

Aman Hussain
12667447

aman.hussain@student.uva.nl

1 Introduction

A common approach to understanding language
is to encode units of language with learned repre-
sentations. We want these representations to be
“close” to each other in some semantic space when
they convey a similar meaning. We hope that the
understanding expressed by these representations
improves our ability to perform language tasks such
as sentiment analysis.

Words are units of language that convey a cer-
tain semantic meaning or even a range of mean-
ings. However, for many tasks understanding sin-
gle words is not enough. Consider classifying the
sentiment of the following movie review: “This
was absolutely not the worst movie I have ever
seen.” If we were to look only at individual words,
“worst” would jump out as an indicator of negative
sentiment. We know, however, that “not” interacts
with “worst” and negates it.

As we have seen, when we construct sentences
by combining individual words together, their
meanings interact, generating new meanings. We
call this compositionality. Given this is the case,
our models need to be able to understand language
at a higher level than words.

The main goal of this paper is to study how well
different techniques for creating sentence repre-
sentations work. We test representations by using
them to classify sentiment of movie reviews (Pang
et al., 2002) using the Stanford Sentiment Treebank
(Socher et al., 2013). Given this task, we explore
the following directions:

• Sentences are intrinsically ordered: the order
of words in a sentence changes its meaning.
Does taking this sequential information into
account help to yield better sentence repre-
sentations? We compare the performance of
Continuous Bag of Words (CBOW) models
(Mikolov et al., 2013a), which throw away

word order information, and LSTMs (Hochre-
iter and Schmidhuber, 1997), which do take
word order into account. Intuitively, we ex-
pect to find performance increases when incor-
porating word order. Our experiments agree.

• Does taking phrase compositionality into ac-
count lead to better sentence representations?
To deal with the compositional structure of
phrases, Tai et al. (2015); Le and Zuidema
(2015); Zhu et al. (2015) introduce Tree-
LSTMs. We show that Tree-LSTMs work
better on the sentiment analysis task than reg-
ular LSTM and CBOW models. This is what
we expect, as sentences intrinsically exhibit
compositional structure.

• Does sentence length have an effect on model
performance? The amount of words is an im-
portant property of a sentence. Intuitively,
longer sentences become harder to interpret
than shorter ones, as there is more information
and ambiguity to make sense of. We find that
this is indeed the case.

• The treebank does not only contain sentiment
scores at the sentence level. It also provides us
with sentiment scores at each node in the tree.
We want to know if using this information
increases performance. We expect it does,
since we are able to train on more relevant
data. However, we do not see a significant
increase in performance. We state the possible
reasons for this in Section 5.

• Thus far, we have framed the task as a classi-
fication problem, where sentiment can range
from “very negative” to “very positive”. How-
ever, when the true label is “very negative”,
predicting “very positive” is worse than pre-
dicting “negative”. To make use of this infor-



mation, we frame the task as a regression prob-
lem. We expect this approach to work better,
as we use a training signal that incorporates
more information about the task. However,
we find that performance slightly decreases
with this approach.

2 Background

Our models range from simple to sophisticated and
will be introduced in this order.

2.1 Bag Of Words

In the neural BOW model, we represent each word
with a vector. These vectors are of the same size
as the amount of target classes, 5 in our case. The
sum of these vectors gives the output activation of
each class. We predict the class with the highest
activation. Our task is thus to learn parameters for
each word such that we maximize some objective,
e.g. predictive accuracy. Since we sum each vector
value, word order information is lost.

Given a word, its learned vector representation,
which we call a word embedding, will hopefully
encode a useful representation of that word in the
vector space that it’s mapped to.

2.2 Continuous Bag of Words

The word embeddings introduced in Section 2.1
can be generalized. Instead of fixing the size of the
embedding vectors to the number of target classes,
we fix them to any arbitrary size d. We believe that
high dimensional word embeddings will be able to
capture more interesting semantic information.

A small dataset like ours may result in word
embeddings of poor quality. We therefore use
pre-trained word embeddings, word2vec vec-
tors (Mikolov et al., 2013b), and keep them fixed.

Analogously to the normal BOW case, we then
sum the word embeddings for each vector in a sen-
tence. However, since its BOW representation is
now d-dimensional, we also learn a linear mapping
that projects the BOW representation to the number
of classes, which are then the class activations.

2.3 LSTM

Recurrent neural networks (RNN) are neural net-
works designed to work with sequences. An RNN
contains an internal state that allows it to take
into account information it has encountered earlier.
Vanilla RNNs tend to have problems retaining in-
formation over long periods of time. LSTM models

(Hochreiter and Schmidhuber, 1997) are a variant
of RNN models that alleviate this problem a great
deal by using smart gating mechanisms.

Being able to deal with sequences allows us to in-
corporate word order information, as BOW models
are unable to, into our predictions.

2.4 Tree-LSTM

Tree-LSTMs generalize regular LSTM models to
tree-network topologies. While regular LSTMs
take as input a single hidden state and cell state
computed in a previous time-step, Tree-LSTMs
allow for an arbitrary number of input hidden and
cell states given to it by its children nodes.

Tai et al. (2015) introduce two variants of the
Tree-LSTM: Child-Sum Tree-LSTMs and N-ary
Tree-LSTMs. For most computations, the first vari-
ant sums its childrens’ hidden states. This throws
away order information at the node level. For senti-
ment classification, we use the latter variant, which
does not throw away order information. Specifi-
cally, we apply it to the constituency parse trees of
sentences, which are binary trees.

3 Models

In the CBOW model, we use three different ar-
chitectures. The simplest one uses a single linear
layer to map from word embeddings to class ac-
tivations. The second one, which we call Deep
CBOW, uses 3 linear layers, with a tanh nonlin-
earity between layers. The third one, which we call
PTDeepCBOW, uses pre-trained word embeddings
on top of Deep CBOW.

The LSTM model processes all words in the
sentence sequentially. We project the final output
hidden state, which can be seen as a latent represen-
tation of the sentence, to a probability distribution
over classes. This projection is done using a single
linear layer with a dropout layer before it.

The Tree-LSTM model takes as input the con-
stituency parse tree of a sentence with sentiment
at each node. Starting from the leaf nodes, the
tree-LSTM combines hidden representation of its
children nodes in a bottom-up fashion using the N-
ary Tree-LSTM model with N = 2. This is done
until we reach the root node. The hidden represen-
tation of the root node is then used for classification.
We project the hidden representation using a single
hidden layer and dropout layer before it.

Every model outputs class activations. These ac-
tivations are first run through a softmax layer to get



a probability distribution over classes. The model
is then evaluated using a cross entropy loss. We
also evaluate a model by computing the accuracy
of its predictions: the number of correct predictions
out of all datapoints.

To frame the task as a regression problem, we
simply append a feedforward network layer map-
ping the output of previously mentioned classifiers
to a single number. This number is run through
a sigmoid and multiplied by 4, so that it is con-
strained to the range [0, 4]. To make predictions,
we round an output to the nearest integer.

4 Experiments

4.1 Dataset

The Stanford Sentiment Treebank dataset consists
of 11,855 sentences. All sentences are parsed us-
ing a constituency parser and stored as binary trees.
A sentence tree contains sentiment scores at each
node. Each sample is assigned one of five senti-
ment labels: ”very negative”, ”negative”, ”neutral”,
”positive”, and ”very positive”. We split the dataset
into training (8,544 sentences), development (1,101
sentences) and test (2,210 sentences) sets.

4.2 Training Procedure and Evaluation

We train each model for 10,000 iterations, as vali-
dation losses seem to have converged by this point.
We train each model on 3 different seeds. The mod-
els that perform best on the validation set are then
evaluated on the test set.

Pre-trained word2vec embeddings of size 300
are used by all models except BOW and CBOW.
Every model is trained using the Adam optimizer
(Kingma and Ba, 2014).

The BOW model uses a learning rate of 0.0005.
The Deep CBOW model uses hidden layers of size
100. The LSTM hidden state has a dimensionality
of 168. We use a dropout keep probability of 0.5.
The Tree LSTM has a hidden dimension of 150. A
slightly lower learning rate of 0.0002 is used for
training the recurrent models.

4.3 Framing it as a Regression Problem

The regression task is evaluated using a mean
squared error (MSE) loss during training. Although
the regression layer could be added to any model,
we only experiment with the LSTM to save com-
putation time.

4.4 Other Experiments

We have sentiment scores at every level of a parse
tree. By treating every subtree of a sentence as a
training sample, we can perform sentiment classi-
fication at the node level. This gives us more data
to work with. We extract all subtrees from each
sentence and remove all subtrees containing just
a single leaf node. To keep the amount of data
bounded, we sample 8000 subtrees, excluding the
complete sentences, and add them to the original
dataset. We will refer to this experiment as Subtree
LSTM.

To study the effect of sentence length on the
performance of our models, we split the test set by
sentence length: Very Short, Short, Medium, Long,
and Very Long. We evaluate the trained model on
each of these subsets. For exact sentence lengths,
see Table 2 in the Appendix.

5 Results and Analysis

Model performance is shown in Table 1. Validation
accuracies over training iterations are shown in
Figure 1. Accuracies are averaged over only 3 runs,
making significance testing reasonably unreliable.

Table 1: Model performance evaluated on the test data.
Accuracy is averaged over three runs. Standard devia-
tions are given in parenthesis.

Model Test Accuracy (std)

BOW 0.2226 (0.0114)
CBOW 0.3066 (0.0137)
DeepCBOW 0.3356 (0.0057)
PTDeepCBOW 0.4296 (0.0060)
RegressionLSTM 0.4376 (0.0093)
LSTM 0.4516 (0.0061)
SubtreeLSTM 0.4608 (0.0169)
TreeLSTM 0.4700 (0.0069)

5.1 Word Order and Word Embeddings

Overall, using pre-trained word embeddings leads
to the highest gain in evaluation accuracy. This
is made especially clear by Figure 1. All the best
models use pre-trained embeddings. The learn-
ing is made easier by the pre-trained embeddings,
which can be seen as a form of transfer learning.

Table 1 shows that incorporating word order in-
formation leads to modest gains in performance,
as all recurrent models outperform the best BOW
model.



0 2000 4000 6000 8000 10000
Training Step

0.20

0.25

0.30

0.35

0.40

0.45

Tra
in 

Ac
cu

rac
y

BOW
CBOW
DeepCBOW
PTDeepCBOW
LSTM
TreeLSTM
SubtreeLSTM
Regression

Figure 1: Validation accuracies of different models
across the training iterations. Points are represented by
an average over 3 seeds. Error bars represent standard
deviations.

Out of all models, the Tree-LSTM performs best.
This implies that sentence compositionality does
aid in creating better sentence representations. The
Tree-LSTM model is able to capture compositional
semantics from the interaction of words at different
levels in the sentence tree. Other models don’t use
this information.

In Figure 1, we see that Tree-LSTM quickly
starts to overfit. The Tree-LSTM model has mil-
lions of parameters, whereas our dataset only has
8,000 training samples. Even though we use
dropout, heavier regularization may decrease the
amount of overfitting.

We expected the Subtree LSTM model to per-
form better than the regular Tree-LSTM. Unfortu-
nately, it actually performs slightly worse. How-
ever, the uncertainty in its accuracy estimate is
quite high, so we can’t make strong conclusions.
The Subtree LSTM might benefit from training
longer, since it does not seem to overfit as much
(Figure 1). Moreover, increasing the amount of
subtree samples may lead to performance gains.

5.2 Effect of Sentence Length

As we can see in Figure 2, the general trend is that
accuracy decreases as sentence length increases.
We find that recurrent models outperform BOW
models for longer sentences.

It may be easier to extract the signal from fewer
words, resulting in high performance in the “Very
Short” test set. Since longer sentences can intro-
duce more noise than signal, we need recurrence
to extract the sequence information in a principled
way.

In Figure 2, we have only plotted the results of

some representative models to highlight the trends
and avoid overcrowding. For a more detailed plot,
see Figure 3 in Appendix A.

Figure 2: Test accuracy with increasing sentence
lengths

5.3 Sentiment Analysis as a Regression task
We had hoped that using label ordering information
would yield a better training signal, but we find
that the regular LSTM model does better than the
Regression LSTM model.

Looking at our model predictions as sentiment
“scores” rather than labels does give us a differ-
ent perspective on the problem. Prediction error
gives us a more granular view on how wrong our
prediction is, and if the model thinks it is more
positive/negative than it is.

6 Conclusion

In this paper, we evaluate techniques for creating
sentence representations on the sentiment classifi-
cation task. We show that: word order is impor-
tant; Tree-LSTMs outperform their recurrent coun-
terparts, which agrees with findings of Tai et al.
(2015); sentiment classification is harder when sen-
tence length increases; and that supervising sen-
timent at the node level decreases overfitting, but
does not lead to performance improvements. We
present a method for framing the sentiment classi-
fication task as a regression problem, which has,
to the best of our knowledge, not been done for
this specific task before. Although this does not
lead to performance improvements, it allows for a
different and useful perspective of the problem. In-
teresting further work would be to analyze why the
regression case does not work as well as expected,
and to explore the benefits of both perspectives.



References
Sepp Hochreiter and Jürgen Schmidhuber. 1997.

Long short-term memory. Neural computation,
9(8):1735–1780.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. Cite
arxiv:1412.6980Comment: Published as a confer-
ence paper at the 3rd International Conference for
Learning Representations, San Diego, 2015.

Phong Le and Willem Zuidema. 2015. Composi-
tional Distributional Semantics with Long Short
Term Memory. In Proceedings of the Fourth Joint
Conference on Lexical and Computational Seman-
tics, pages 10–19, Denver, Colorado. Association for
Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient Estimation of Word Repre-
sentations in Vector Space. arXiv:1301.3781 [cs].
ArXiv: 1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up?: Sentiment classification using
machine learning techniques. In Proceedings of the
ACL-02 Conference on Empirical Methods in Natu-
ral Language Processing - Volume 10, EMNLP ’02,
pages 79–86, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved Semantic Representa-
tions From Tree-Structured Long Short-Term Mem-
ory Networks. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 1556–1566, Beijing, China. Associa-
tion for Computational Linguistics.

Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo.
2015. Long short-term memory over recursive struc-
tures. In Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of
Proceedings of Machine Learning Research, pages
1604–1612, Lille, France. PMLR.

Appendix A

Figure 3: Accuracy with increasing sentence lengths

Table 2: Test data to measure effect of sentence length
on performance

Test
Subset

Sentence
Length

Sample
Size

Very Short 2 - 11 442
Short 11 - 16 442

Medium 16 - 21 442
Long 21 - 27 442

Very Long 27 - 56 442

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/S15-1002
https://doi.org/10.18653/v1/S15-1002
https://doi.org/10.18653/v1/S15-1002
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://doi.org/10.3115/1118693.1118704
https://doi.org/10.3115/1118693.1118704
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.3115/v1/P15-1150
http://proceedings.mlr.press/v37/zhub15.html
http://proceedings.mlr.press/v37/zhub15.html

